Allogeneic Lymphocytes Persist and Traffic in Feral MHC-Matched Mauritian Cynomolgus Macaques

نویسندگان

  • Justin M. Greene
  • Benjamin J. Burwitz
  • Alex J. Blasky
  • Teresa L. Mattila
  • Jung Joo Hong
  • Eva G. Rakasz
  • Roger W. Wiseman
  • Kim J. Hasenkrug
  • Pamela J. Skinner
  • Shelby L. O'Connor
  • David H. O'Connor
چکیده

BACKGROUND Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer. METHODOLOGY/ PRINCIPAL FINDINGS Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer. CONCLUSIONS/SIGNIFICANCE MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naïve animals may define the immune mechanisms responsible for protection and guide future vaccine development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allogeneic Lymphocyte Transfer in MHC-Identical Siblings and MHC-Identical Unrelated Mauritian Cynomolgus Macaques

The detailed study of immune effector mechanisms in primate models of infectious disease has been limited by the inability to adoptively transfer lymphocytes from vaccinated animals into naïve immunocompetent recipients. Recent advances in our understanding of the Major Histocompatibility Complex diversity of Mauritian cynomolgus macaques enabled the establishment of a breeding program to gener...

متن کامل

Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques.

Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques...

متن کامل

An aerosol challenge model of tuberculosis in Mauritian cynomolgus macaques

BACKGROUND New interventions for tuberculosis are urgently needed. Non-human primate (NHP) models provide the most relevant pre-clinical models of human disease and play a critical role in vaccine development. Models utilising Asian cynomolgus macaque populations are well established but the restricted genetic diversity of the Mauritian cynomolgus macaques may be of added value. METHODS Mauri...

متن کامل

Whole-Genome Sequencing of Six Mauritian Cynomolgus Macaques (Macaca fascicularis) Reveals a Genome-Wide Pattern of Polymorphisms under Extreme Population Bottleneck

Cynomolgus macaques (Macaca fascicularis) were introduced to the island of Mauritius by humans around the 16th century. The unique demographic history of the Mauritian cynomolgus macaques provides the opportunity to not only examine the genetic background of well-established nonhuman primates for biomedical research but also understand the effect of an extreme population bottleneck on the patte...

متن کامل

Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization.

Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008